3.2.29 \(\int \frac {\sec ^2(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx\) [129]

Optimal. Leaf size=77 \[ \frac {3 \text {ArcTan}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{2 \sqrt {2} a^{3/2} d}-\frac {\tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}} \]

[Out]

3/4*arctan(1/2*a^(1/2)*tan(d*x+c)*2^(1/2)/(a+a*sec(d*x+c))^(1/2))/a^(3/2)/d*2^(1/2)-1/2*tan(d*x+c)/d/(a+a*sec(
d*x+c))^(3/2)

________________________________________________________________________________________

Rubi [A]
time = 0.07, antiderivative size = 77, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {3882, 3880, 209} \begin {gather*} \frac {3 \text {ArcTan}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a \sec (c+d x)+a}}\right )}{2 \sqrt {2} a^{3/2} d}-\frac {\tan (c+d x)}{2 d (a \sec (c+d x)+a)^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sec[c + d*x]^2/(a + a*Sec[c + d*x])^(3/2),x]

[Out]

(3*ArcTan[(Sqrt[a]*Tan[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sec[c + d*x]])])/(2*Sqrt[2]*a^(3/2)*d) - Tan[c + d*x]/(2*
d*(a + a*Sec[c + d*x])^(3/2))

Rule 209

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*ArcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /;
 FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a, 0] || GtQ[b, 0])

Rule 3880

Int[csc[(e_.) + (f_.)*(x_)]/Sqrt[csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_)], x_Symbol] :> Dist[-2/f, Subst[Int[1/(2
*a + x^2), x], x, b*(Cot[e + f*x]/Sqrt[a + b*Csc[e + f*x]])], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0
]

Rule 3882

Int[csc[(e_.) + (f_.)*(x_)]^2*(csc[(e_.) + (f_.)*(x_)]*(b_.) + (a_))^(m_), x_Symbol] :> Simp[(-Cot[e + f*x])*(
(a + b*Csc[e + f*x])^m/(f*(2*m + 1))), x] + Dist[m/(b*(2*m + 1)), Int[Csc[e + f*x]*(a + b*Csc[e + f*x])^(m + 1
), x], x] /; FreeQ[{a, b, e, f}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -2^(-1)]

Rubi steps

\begin {align*} \int \frac {\sec ^2(c+d x)}{(a+a \sec (c+d x))^{3/2}} \, dx &=-\frac {\tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}+\frac {3 \int \frac {\sec (c+d x)}{\sqrt {a+a \sec (c+d x)}} \, dx}{4 a}\\ &=-\frac {\tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}-\frac {3 \text {Subst}\left (\int \frac {1}{2 a+x^2} \, dx,x,-\frac {a \tan (c+d x)}{\sqrt {a+a \sec (c+d x)}}\right )}{2 a d}\\ &=\frac {3 \tan ^{-1}\left (\frac {\sqrt {a} \tan (c+d x)}{\sqrt {2} \sqrt {a+a \sec (c+d x)}}\right )}{2 \sqrt {2} a^{3/2} d}-\frac {\tan (c+d x)}{2 d (a+a \sec (c+d x))^{3/2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.20, size = 94, normalized size = 1.22 \begin {gather*} \frac {\left (-2 \sqrt {1-\sec (c+d x)}+3 \sqrt {2} \tanh ^{-1}\left (\frac {\sqrt {1-\sec (c+d x)}}{\sqrt {2}}\right ) (1+\sec (c+d x))\right ) \tan (c+d x)}{4 d \sqrt {1-\sec (c+d x)} (a (1+\sec (c+d x)))^{3/2}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sec[c + d*x]^2/(a + a*Sec[c + d*x])^(3/2),x]

[Out]

((-2*Sqrt[1 - Sec[c + d*x]] + 3*Sqrt[2]*ArcTanh[Sqrt[1 - Sec[c + d*x]]/Sqrt[2]]*(1 + Sec[c + d*x]))*Tan[c + d*
x])/(4*d*Sqrt[1 - Sec[c + d*x]]*(a*(1 + Sec[c + d*x]))^(3/2))

________________________________________________________________________________________

Maple [B] Leaf count of result is larger than twice the leaf count of optimal. \(221\) vs. \(2(62)=124\).
time = 0.10, size = 222, normalized size = 2.88

method result size
default \(\frac {\sqrt {\frac {a \left (1+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}\, \left (3 \sin \left (d x +c \right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \ln \left (-\frac {-\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )+\cos \left (d x +c \right )-1}{\sin \left (d x +c \right )}\right ) \cos \left (d x +c \right )+3 \ln \left (-\frac {-\sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )+\cos \left (d x +c \right )-1}{\sin \left (d x +c \right )}\right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}\, \sin \left (d x +c \right )+2 \left (\cos ^{2}\left (d x +c \right )\right )-2 \cos \left (d x +c \right )\right )}{4 d \left (1+\cos \left (d x +c \right )\right ) \sin \left (d x +c \right ) a^{2}}\) \(222\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(sec(d*x+c)^2/(a+a*sec(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

1/4/d*(a*(1+cos(d*x+c))/cos(d*x+c))^(1/2)*(3*sin(d*x+c)*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*ln(-(-(-2*cos(d*x
+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))*cos(d*x+c)+3*ln(-(-(-2*cos(d*x+c)/(1+cos(d*x+c)
))^(1/2)*sin(d*x+c)+cos(d*x+c)-1)/sin(d*x+c))*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*sin(d*x+c)+2*cos(d*x+c)^2-2
*cos(d*x+c))/(1+cos(d*x+c))/sin(d*x+c)/a^2

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2/(a+a*sec(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

integrate(sec(d*x + c)^2/(a*sec(d*x + c) + a)^(3/2), x)

________________________________________________________________________________________

Fricas [B] Leaf count of result is larger than twice the leaf count of optimal. 140 vs. \(2 (62) = 124\).
time = 3.51, size = 329, normalized size = 4.27 \begin {gather*} \left [-\frac {3 \, \sqrt {2} {\left (\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {-a} \log \left (\frac {2 \, \sqrt {2} \sqrt {-a} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right ) + 3 \, a \cos \left (d x + c\right )^{2} + 2 \, a \cos \left (d x + c\right ) - a}{\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1}\right ) + 4 \, \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right )}{8 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}}, -\frac {3 \, \sqrt {2} {\left (\cos \left (d x + c\right )^{2} + 2 \, \cos \left (d x + c\right ) + 1\right )} \sqrt {a} \arctan \left (\frac {\sqrt {2} \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right )}{\sqrt {a} \sin \left (d x + c\right )}\right ) + 2 \, \sqrt {\frac {a \cos \left (d x + c\right ) + a}{\cos \left (d x + c\right )}} \cos \left (d x + c\right ) \sin \left (d x + c\right )}{4 \, {\left (a^{2} d \cos \left (d x + c\right )^{2} + 2 \, a^{2} d \cos \left (d x + c\right ) + a^{2} d\right )}}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2/(a+a*sec(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

[-1/8*(3*sqrt(2)*(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)*sqrt(-a)*log((2*sqrt(2)*sqrt(-a)*sqrt((a*cos(d*x + c) +
 a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c) + 3*a*cos(d*x + c)^2 + 2*a*cos(d*x + c) - a)/(cos(d*x + c)^2 + 2*c
os(d*x + c) + 1)) + 4*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)*sin(d*x + c))/(a^2*d*cos(d*x + c)^2
 + 2*a^2*d*cos(d*x + c) + a^2*d), -1/4*(3*sqrt(2)*(cos(d*x + c)^2 + 2*cos(d*x + c) + 1)*sqrt(a)*arctan(sqrt(2)
*sqrt((a*cos(d*x + c) + a)/cos(d*x + c))*cos(d*x + c)/(sqrt(a)*sin(d*x + c))) + 2*sqrt((a*cos(d*x + c) + a)/co
s(d*x + c))*cos(d*x + c)*sin(d*x + c))/(a^2*d*cos(d*x + c)^2 + 2*a^2*d*cos(d*x + c) + a^2*d)]

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sec ^{2}{\left (c + d x \right )}}{\left (a \left (\sec {\left (c + d x \right )} + 1\right )\right )^{\frac {3}{2}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)**2/(a+a*sec(d*x+c))**(3/2),x)

[Out]

Integral(sec(c + d*x)**2/(a*(sec(c + d*x) + 1))**(3/2), x)

________________________________________________________________________________________

Giac [A]
time = 1.18, size = 108, normalized size = 1.40 \begin {gather*} -\frac {\frac {3 \, \sqrt {2} \log \left ({\left | -\sqrt {-a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} \right |}\right )}{\sqrt {-a} a \mathrm {sgn}\left (\cos \left (d x + c\right )\right )} + \frac {\sqrt {2} \sqrt {-a \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} + a} \tan \left (\frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{a^{2} \mathrm {sgn}\left (\cos \left (d x + c\right )\right )}}{4 \, d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(sec(d*x+c)^2/(a+a*sec(d*x+c))^(3/2),x, algorithm="giac")

[Out]

-1/4*(3*sqrt(2)*log(abs(-sqrt(-a)*tan(1/2*d*x + 1/2*c) + sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)))/(sqrt(-a)*a*sgn
(cos(d*x + c))) + sqrt(2)*sqrt(-a*tan(1/2*d*x + 1/2*c)^2 + a)*tan(1/2*d*x + 1/2*c)/(a^2*sgn(cos(d*x + c))))/d

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {1}{{\cos \left (c+d\,x\right )}^2\,{\left (a+\frac {a}{\cos \left (c+d\,x\right )}\right )}^{3/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(cos(c + d*x)^2*(a + a/cos(c + d*x))^(3/2)),x)

[Out]

int(1/(cos(c + d*x)^2*(a + a/cos(c + d*x))^(3/2)), x)

________________________________________________________________________________________